Volume 26

Number 13

July 1, 1987

Inorganic Chemistry

© Copyright 1987 by the American Chemical Society

Communications

Nonclassical Polysulfide Complexes: Cage and Ring Compounds $[(MeCp)Ru(PPh_3)]_2S_x$ (x = 6, 4)

Sir:

Aggregates of main-group elements are rich sources of ligands in transition-metal chemistry.^{1,2} Two topical classes of such ligands are polyatomic main group anions and cations.³ Metal polysulfide complexes² may be viewed as derivatives of the simple Zintl ions S_x^{2-} . In principle such metalla-Zintl complexes would adopt cage and ring structures of the Gillespie type⁴ when rendered electron deficient. Previous work has shown, however, that electron deficiency in metal sulfides stabilizes terminal mono- and disulfido ligands. We now report results obtained in the course of our studies on organoruthenium sulfides^{5,6} that show a relationship between metallapolysulfides and polysulfur cations.

The starting material for this project was $[(MeCp)Ru-(PPh_3)_2S]_2[SbF_6]_2$ (1), prepared in high yield from $(MeCp)Ru-(PPh_3)_2Cl$, AgSbF₆, and S₈ $(MeCp = \eta^5-CH_3C_5H_4)$. The structure and properties of this centrosymmetric complex have been examined in detail and will be discussed in a forthcoming full report.⁷ Treatment of THF slurries of 1 (0.1 mmol/20 mL of THF) with 1 equiv of solid $(NBu_4)_2S_6^8$ results in a rapid reaction giving two neutral ruthenium complexes according to the stoichiometry shown:

$$[(MeCp)_2Ru_2(PPh_3)_4S_2]^{2+} \xrightarrow{S_6^{2-}} (MeCp)_2Ru_2(PPh_3)_2S_x + 2SPPh_3 (1)$$

This result highlights the considerable potential of $(NBu_4)_2S_6$ as a reagent in metal polysulfide chemistry. The products were each isolated in ca. 35% yield as blue-black (2) and purple (3) microcrystals after silica gel chromatography eluting with 1:1 CH₂Cl₂-hexane and after crystallization from CH₂Cl₂-hexanes. ¹H and ³¹P NMR studies indicate that 2 contains equivalent (MeCp)Ru(PPh₃) subunits.⁹ The 500-MHz ¹H NMR spectrum

- Krebs, B. Angew. Chem., Int. Ed. Engl. 1983, 22, 113. Scherer, O. J. Angew. Chem., Int. Ed. Engl. 1985, 24, 924. Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1986, 25, 56.
- (2) Draganjac, M.; Rauchfuss, T. B. Angew. Chem., Int. Ed. Engl. 1985, 24, 742.
- (3) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon: New York, 1985. von Schnering, H. G. Angew. Chem., Int. Ed. Engl. 1981, 20, 33.
- (4) Gillespie, R. J. Chem. Soc. Rev. 1979, 8, 315.
- (5) Howard, K. E.; Rauchfuss, T. B.; Rheingold, A. L. J. Am. Chem. Soc. 1986, 108, 297.
- (6) Rauchfuss, T. B.; Rodgers, D. P. S.; Wilson, S. R. J. Am. Chem. Soc. 1986, 108, 3114.
- (7) Amarasekera, J.; Rauchfuss, T. B.; Wilson, S. R., manuscript in preparation.
- (8) Teller, R. G.; Krause, L. J.; Haushalter, R. C. Inorg. Chem. 1983, 22, 1809.

Figure 1. Structure of 1,5-[(MeCp)Ru(PPh₃)]₂S₆ (2; phenyl rings are shown as ipso carbon atoms only) and a top view of the Ru₂S₆ core.

showed four $CH_3C_5H_4$ multiplets and one methyl singlet consistent with a chiral structure.

The crystallographic study¹⁰ showed that **2** consists of a bicyclic Ru_2S_6 core (Figure 1). Each ruthenium atom is unsymmetrically bound to two sulfur atoms. One of the five S–S bonds is quite

(10) Crystal data for C₄₈H₄₄P₂Ru₂S₆ (2): 293 K, monoclinic, P2₁/c, a = 9.336 (2) Å, b = 19.664 (5) Å, c = 24.819 (7) Å, β = 100.77 (2)°, V = 4472 (2) Å³, Z = 4, μ (Mo K α) = 10.35 cm⁻¹, D(calcd) = 1.600 g cm⁻³; deep red crystal, 0.15 × 0.22 × 0.32 mm; Nicolet R3m/ μ (4° ≤ 2 θ ≤ 48°), 6195 data, 5822 independent data, 3821 observed data (≥3 σ (F₀)), R(int) = 3.8%. Data were empirically corrected for absorption. Solution was by direct methods, anisotropic least-squares refinement of all non-hydrogen atoms, rigid phenyl ring constraint, and idealized H atoms. R(F) = 4.77%, R_w(F) = 4.95%, GOF = 1.194, ρ (max) = 0.51 e Å⁻³, and N₀/N_v = 8.5.

0020-1669/87/1326-2017\$01.50/0 © 1987 American Chemical Society

^{(9) [}CpRu(PPh₃)]₂S₆: Anal. C, H. S. ¹H NMR (C₆D₆, 25 °C); δ 6.80-7.50 (m, 30 H), 4.65 (s, 10 H). (MeCp)₂Ru₂(PPh₃)₂S₆ was obtained in spectroscopically pure form but crystallized with variable amounts of CH₂Cl₂. ¹H NMR spectrum of the MeCp analogue (CDCl₃): δ 7.3-7.0 (m, 30 H), 4.55 (br s, 2 H), 4.40 (br s, 2 H), 4.31 (br s, 2 H), 4.32 (sh, 2 H) 1.74 (s, 6 H), 6.80-7.5 (m, 30 H). ³¹P[¹H] NMR (CDCl₃): δ 54.03. FABMS (m/z, ¹⁰²Ru): 1050 (P⁺), 1018 (P⁺ - S), 986 (P⁺ - 2S), 954 (P⁺ - 3S).

Table I. Selected Bond Distances and Angles for 2 and 3

bond	22		3	<u> </u>
<u> </u>	(a) B	ond Distand	ces	
Ru-S	Ru(1) - S(1)	2.267 (2)	Ru-S(1)	2.285 (2)
	Ru(1) - S(4)	2.376 (3)	Ru-S(2)	2.305 (1)
Ru-P	Ru(1) - P(1)	2.301 (2)	Ru-P	2.285 (1)
Ru-	Ru(1) - CNT(1)	1.887 (5)	Ru-CNT	1.916 (4)
centroid	., .,	. ,		
	Ru(2)-CNT(2)	1.894 (5)		
S-S	S(1) - S(2)	2.067 (3)	S(1)-S(2a)	2.046 (2)
	S(2) - S(3)	2.024 (3)		
	S(1)S(6)	2.772 (3)		
	(b)	Bond Angle	s	
S-Ru-S	S(1)-Ru(1)-S(4)	93.6 (1)	S(1)-Ru-S(2)	100.5 (1)
S-Ru-P	S(1) - Ru(1) - P(1)	93.5 (1)	S(1)-Ru-P	89.0 (1)
Ru-S-S	Ru(1)-S(1)-S(2)	104.5 (1)	Ru-S(1)-S(2a)	110.1 (1)
S-S-S	S(1) - S(2) - S(3)	105.2	., .,	. ,

Figure 2. Structure of 1,4-[(MeCp)Ru(PPh₃)]₂S₄ (3; phenyl rings are shown as ipso carbon atoms only).

long at 2.77 Å (Table I). A bonding scheme compatible with these findings highlights the relationship of 2 to $S_8^{2+.11}$

According to our analysis, the electron deficiency at each ruthenium center is compensated by Ru-S multiple bonding indicated by the short Ru-S distance of 2.27 Å; the other Ru-S distance is 0.1 Å longer. Ru-S multiple bonding is stabilized by the stereoelectronic properties of ruthenium and sulfur.⁷ This argument is closely related to the α -effect, which has recently been invoked to explain the exceptional basicity of the phosphido ligand in $CpRe(PPh_3)(NO)(PPh_2)$.¹² The special feature of 2 is that

the metal-sulfur multiple bonds, 6,13 Ru(1)=S(1) and Ru(2)= S(6), induce the transannular S(1)–S(6) bonding, which gives rise to the complex's diamagnetism. The stability of the bonding arrangement in 2 is supported by the fact that it is electrochemically inactive in the range ± 1 V vs. Ag/AgCl. An alternative analysis of the structural results is that 2 consists of an antiferromagnetically coupled pair of Ru(III) centers. This argument does not account for its stereochemical rigidity (see NMR results) nor does it explain the unusually short pair of Ru-S distances.

The purple complex $(MeCp)_2Ru_2(PPh_3)_2S_4$ (3) isolated from reaction 1 has a symmetric structure as indicated by its ¹H and ³¹P NMR characteristics.¹⁴ Its structure was shown crystallographically ^15 to consist of a centrosymmetric Ru_2S_4 chairlike core with the large PPh₃ groups in equatorial positions (Figure 2). The Ru-S distances in 3 are shorter than conventional Ru-S σ bonds (ca. 2.4 Å¹⁶), indicating delocalized Ru-S bonding, which results in the complex's diamagnetism. In contrast with 2, 3 has a rich electrochemistry consisting of quasi-reversible couples at -1.30 V $(i_a/i_c = 0.78)$ and 0.50 V $(i_c/i_a = 0.72)$ vs. Ag/AgCl (0.1 M $(Bu_4N)PF_6$ in CH_2Cl_2). Other compounds featuring related 1,4- M_2E_4 (E = S, Se) cores are $[\{W(CO)_5\}_2(\mu-c-Se_4)\}^{2+17}$ and $[(RCp)_{2}Ti]_{2}S_{4}.^{18}$

This work establishes a connection between the metallapolysulfides² and the electron-deficient polychalcogenide cations.⁴ Further work is in progress to characterize the reactivity of compounds 2 and 3.

Acknowledgment. This research was supported by the National Science Foundation. Mass spectra were obtained at the University of Illinois Mass Spectrometry Laboratory, supported by the National Institutes of Health.

Supplementary Material Available: Tables of bond distances, bond angles, anisotropic thermal parameters, hydrogen atom coordinates, and atomic coordinates for 2 and 3 (13 pages); tables of structure factors for 2 and 3 (46 pages). Ordering information is given on any current masthead page.

- (13)Millar, M. M.; O'Sullivan, T.; de Vries, N.; Koch, S. A. J. Am. Chem. Soc. 1985, 107, 3714.
- $[(MeCp)Ru(PPh_3)]_2S_4: Anal. C, H. S. {}^{1}H NMR (CDCl_3, 25 °C): \delta 7.20-7.62 (m, 30 H), 3.92 (s, 4 H), 3.30 (s, 4 H), 1.30 (s, 6 H). {}^{31}P[{}^{1}H]$ (14)NMR (CDCl₃): δ 60.30.
- (15) Crystal data for $C_{48}H_{44}P_2Ru_2S_4$ CH₂Cl₂ (3): 293 K, monoclinic, P_{21}/n , a = 10.064 Å, b = 14.259 (4) Å, c = 17.699 (6) Å, $\beta = 103.28$ (3), V = 2472 (1) Å³, Z = 2, μ (Mo K α) = 10.8, D(calcd) = 1.475 g cm⁻³; deep red crystal, 0.21 × 0.27 × 0.33 mm; Nicolet R3m/ μ (4° $\leq 2\theta \leq 45^{\circ}$), 4213 data, 3887 independent data, 2752 observed data ($\geq 3\sigma(F_{o})$), R(int) = 2.5%. Data were empirically corrected for absorption. Solution and refinement were performed as for 2. R(F) = 3.94%, $R_w(F) = 4.10\%$, GOF = 0.980, $\rho(\max) = 0.62$ e Å⁻³, and $N_o/N_v = 11.2$. (16) Draganjac, M.; Ruffing, C. J.; Rauchfuss, T. B. Organometallics 1985,
- 4. 1909.
- (17) Belin, C.; Makani, T.; Rozière, J. J. Chem. Soc., Chem. Commun. 1985, 118. Collins, M. J.; Gillespie, R. J.; Kolis, J. W.; Sawyer, J. F. Inorg. Chem. 1986, 25, 2057.
- Compounds 2 and 3 have the same M_2S_x core stoichiometries as 1,4- $[(RCp)_2Ti]_2S_4$ and 1,5- $[(RCp)_2Ti]_2S_6$. See: Giolando, D. M.; Rauchfuss, T. B.; Rheingold, A. L.; Wilson, S. R. Organometallics 1987, 6, 667. Bolinger, C. M.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 1981, 103, 5620.

School of Chemical Sciences	Jayantha Amarasekera
University of Illinois	Thomas B. Rauchfuss*
Urbana, Illinois 61801	

Department of Chemistry University of Delaware Newark, Delaware 19711

Received January 14, 1987

Arnold L. Rheingold*

⁽¹¹⁾ Davies, C.; Gillespie, R. S.; Park, J. J.; Passmore, J. Inorg. Chem. 1971, 10. 2781

Buhro, W. E.; Georgiou, S.; Hutchinson, J. P.; Gladysz, J. A. J. Am. (12)Chem. Soc. 1985, 107, 3346.